
Exam - Statistics (WBMA009-05) 2021/2022

Date and time: November 10, 2021, 18.45-21.45h
Place: Exam Hall 2, Blauwborgje 4

Rules to follow:

• This is a closed book exam. Consultation of books and notes is not permitted.
You can use a simple (non-programmable) calculator.

• Write your name and student number onto each paper sheet.
There are 4 exercises and you can reach 90 points.
ALWAYS include the relevant equation(s) and/or short descriptions.

• We wish you success with the completion of the exam!

START OF EXAM

1. Asymptotic confidence intervals and tests. 25
Consider a random sample X1, . . . , Xn from a negative Binomial distribution with
known parameter r ∈ N and unknown probability parameter θ ∈ (0, 1). Recall that
the density and the expectation are

f(x) =

(
x+ r − 1

x

)
· (1− θ)r · θx (x ∈ N0), E[X] =

θr

1− θ

(a) Show that the ML estimator of θ is: θ̂ML = X̄/(r + X̄).
Check via the 2nd derivative if this is really a maximum point. 5

(b) Show that the expected Fisher information (for a sample size 1) is

I(θ) =
r

θ · (1− θ)2
5

From now on we assume that r = 2, n = 20 and that X̄ = 8 has been observed.
And we use the quantiles provided in Table 1 on page 2.

(c) Make use of the asymptotic normality of the ML estimator and give a two-sided
asymptotic 95% confidence interval [L,U ] for θ. 5

(d) Make use of the asymptotic normality of the ML estimator and give a one-sided
asymptotic 95% confidence interval (−∞, U ] for θ. 5

(e) Check whether a score-test to the level α = 0.02 would reject the null hypoth-
esis H0 : θ = 0.9 in favour of the alternative H1 : θ 6= 0.9. 5

HINT: Score test: d
dθ
lX(θ)/

√
n · I(θ) is asymptotically N(0, 1) distributed.
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α 0.5 0.75 0.9 0.95 0.975 0.99 0.99997
qα 0 0.7 1.3 1.6 2 2.3 4

Table 1: Approximate quantiles qα of the N (0, 1) distribution.

2. Random sample. 30
Consider a random sample

X1, . . . , Xn ∼ Fθ
from a distribution that depends on a parameter θ > 0 and whose density is:

fθ(x) =
1

2
· θ3 · x2 exp{−xθ} (x > 0)

(a) Give a sufficient statistic for θ. 5

(b) Compute the ML estimator of θ. 5
HINT: Check via the 2nd derivative whether you have a global maximum.

(c) Compute the Fisher information I(θ) for a sample of size n = 1. 5

(d) Assume that n = 81 and θ̂ML = 3. Give an asymptotic one-sided 95% confi-
dence interval (of the type [L,∞]) for θ. 5
HINTS:
You can assume that all regularity conditions are fulfilled.
See Table 1 for the relevant quantiles.

(e) Consider the simple test problem

H0 : θ = 4 vs. H1 : θ = 2

Show that a statistical test that rejects H0 if
n∑
i=1

Xi > k0, where k0 > 0 is a

constant, is the UMP test for this test problem. 10

3. Test level, power and p-value of a statistical test. 20
Consider a random sample of size n from a Gaussian distribution with known vari-
ance parameter σ2 = 4:

X1, . . . , Xn ∼ N (µ, 4)

and the simple test problem

H0 : µ = 0 vs. H1 : µ = −0.54

The null hypothesis is rejected when x̄n ≤ −0.4.
For solving the exercise use and only use the quantiles provided in Table 1.

(a) Given sample size n = 100, what is the test level? 5

(b) Given sample size n = 100, what is the power of the test? 5

(c) Given sample size n = 100, assume that x̄n = −0.14 was observed.

What is the p-value of the test? 5

(d) How large must n (at least) be, so that the test has power 0.9? 5
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4. Sample from Poisson distribution. 15
Let X1, . . . , Xn be a sample from a Poisson distribution with density:

p(x|λ) = e−λ · λ
x

x!
(x ∈ N0)

where λ > 0 is an unknown parameter.

Recall that T (X1, . . . , Xn) :=
n∑
i=1

Xi has a Poisson distribution with parameter nλ.

(a) Show that T (X1, . . . , Xn) :=
n∑
i=1

Xi is a sufficient statistic for λ. 5

(b) Derive the uniform most powerful (UMP) test for the test problem

H0 : λ ≤ λ0 vs. H1 : λ > λ0

to the significance level α = 0.05. 10
HINT: In your solutions you can use the symbol qλ,α to denote the α quantile
of a Poisson distribution with parameter λ.
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Solutions Exercise 1

1(a): Compute the log likelihood:

lX(θ) = log

(
n∏
i=1

(
xi + r − 1

xi

)
· (1− θ)r · θxi

)

= log

(
(
n∏
i=1

(
xi + r − 1

xi

)
) · (1− θ)nr · θ

∑n
i=1 xi

)

= log

(
n∏
i=1

(
xi + r − 1

xi

))
+ nr log(1− θ) + (

n∑
i=1

xi) log(θ)

Take the derivative w.r.t. θ and set it to 0:

−nr
1− θ

+

∑n
i=1 xi
θ

= 0 ⇔ −nrθ + (
n∑
i=1

xi)(1− θ) = 0⇔ −(nr +
n∑
i=1

xi)θ +
n∑
i=1

xi = 0

⇔ θ =

∑n
i=1 xi

nr +
∑n

i=1 xi
⇔ θ =

x̄

r + x̄

For the second order derivative we have:

d2

dθ2
lX(θ) =

−nr
(1− θ)2

−
∑n

i=1 xi
θ2

< 0 (0 < θ < 1)

This confirms that θ̂ML = X̄/(r + X̄) globally maximizes the (log-)likelihood.

1(b): For n = 1 we have the 2nd order derivative of the log likelihood:

d2

dθ2
lX1(θ) =

−r
(1− θ)2

− X1

θ2

Compute the Fisher Information:

I(θ) = −Eθ
[
d2

dθ2
lX1(θ)

]
= Eθ

[
r

(1− θ)2
+
X1

θ2

]
=

r

(1− θ)2
+
E[X1]

θ2

=
r

(1− θ)2
+

rθ
(1−θ)

θ2
=

r

(1− θ)2
+

rθ

(1− θ)θ2
=
rθ + r(1− θ)

(1− θ)2θ
=

r

θ(1− θ)2

1(c): Asymptotically
√
I(θ)
√
n · (θ̂ML − θ) ∼ N (0, 1), hence:

P (q0.025 ≤
√
I(θ)
√
n · (θ̂ML − θ) ≤ q0.975) = 0.95

⇔ P (θ̂ML −
q0.975√
I(θ) ·

√
n
≤ θ ≤ θ̂ML −

q0.025√
I(θ) ·

√
n

) = 0.95

With q0.975 = 2 and q0.025 = −2, and I(θ) being replaced by I(θ̂ML), we get the CI:

θ̂ML ± 2/(

√
I(θ̂ML) ·

√
n)
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Here we have θ̂ML = 0.8 and 2/(

√
I(θ̂ML)

√
n) = 2/(

√
2/(0.8 · 0.22)

√
20 ≈ 0.057.

So the two-sided CI is: [0.74, 0.86].

1(d): Like part (c), but here we use:

P (q0.05 ≤
√
I(θ)
√
n · (θ̂ML − θ)) = 0.95⇔ P (θ̂ML −

q0.05√
I(θ) ·

√
n
≥ θ) = 0.95

With q0.05 = −1.6 the one-sided 95% CI for θ is: (−∞, θ̂ML + 1.6√
I(θ̂ML)·

√
n

]

Here we have θ̂ML = 0.8 and 1.6√
I(θ̂ML)

√
n

= 1.6√
2

0.8·0.22
√
20
≈ 0.045.

So the one-sided CI is: (−∞, 0.845].

1(e): Asymptotically:
d
dθ
lX(θ)√
n·I(θ)

∼ N(0, 1) where d
dθ
lX(θ) = −nr

1−θ +
∑n
i=1 xi
θ

.

Given r = 2, X̄ = 8 and n = 20 and θ0 = 0.9 we get:
−nr
1−θ +

∑n
i=1 xi
θ

= −40
1−0.9 + 20·8

0.9
≈ −222 and

√
n · I(θ) =

√
20 · 2

0.9·0.12 ≈ 66.67

Therefore the score test statistic takes the value:
d
dθ
lX(θ)√
n·I(θ)

= −222
66.67

≈ −3.33. As the

value is lower than the q0.01 quantile −2.3 of the N(0, 1), the score test would reject
the null hypothesis to the level 0.02.
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Solutions Exercise 2
2(a):We have the likelihood

L(θ) =
n∏
i=1

1

2
· θ3 · x2i · exp{−xiθ} =

1

2n
· θ3n ·

(
n∏
i=1

x2i

)
· exp{−θ

n∑
i=1

xi}

And we can factorize into:

L(θ) = g(x1, . . . , xn) · h(
n∑
i=1

xi, θ)

where

g(x1, . . . , xn) :=
1

2n
·
n∏
i=1

x2i and h(
n∑
i=1

xi, θ) := θ3n · exp{−θ
n∑
i=1

xi}

2(b): From the likelihood we get the log-likelihood:

l(θ) = −n log(2) + 3n log(θ) + 2
n∑
i=1

log(xi)− θ
n∑
i=1

xi

We take the derivative w.r.t. θ and we set it to zero:

l′(θ) =
3n

θ
−

n∑
i=1

xi = 0⇔ θ =
3n
n∑
i=1

xi

=
3

x̄

We compute the 2nd derivative:

l′′(θ) = −3n

θ2

As the 2nd derivative is always negative, we indeed have a maximum point. Hence

θ̂ML =
3

x̄

2(c): We compute the Fisher information (with n = 1)

I(θ) = −E[l′′(θ)] = −E
[
− 3

θ2

]
=

3

θ2

2(d):For large n we have:

√
n · (θ̂ML − θ) ∼ N

(
0,

1

I(θ)

)
Plugging in n = 81 and replacing I(θ) = 3

θ2
by the observed Fisher information

I(θ̂ML) =
3

32
=

1

3

we get
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9 · (θ̂ML − θ) ∼ N (0, 3)⇔ 9√
3
· (θ̂ML − θ) ∼ N (0, 1)

so that

P (
9√
3
· (θ̂ML − θ) < q0.95) = 0.95

Solving for θ yields:

P (θ > θ̂ML − q0.95 ·
√

3

9
) = 0.95

With θ̂ML = 3 and q0.95 = 1.6 (see Table 1) we have the one-sided 95% confidence interval:

[2.69;∞]

2(e): The UMP test rejects H0 if the likelihood ratio W (X) is smaller than a constant
k. We have:

W (X) =
L(4)

L(2)
=

1
2n
· 43n ·

(
n∏
i=1

X2
i

)
· exp{−4

n∑
i=1

Xi}

1
2n
· 23n ·

(
n∏
i=1

X2
i

)
· exp{−2

n∑
i=1

Xi}
= 23n · exp{−2

n∑
i=1

Xi}

W (X) is a monotone decreasing function in
n∑
i=1

Xi, so that we have the equivalence:

W (X) < k ⇔
n∑
i=1

Xi > k0

This shows that a test who rejects H0 if
n∑
i=1

Xi > k0 is UMP.
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Solutions Exercise 3

3(a): Under H0 we have
√
n · (X̄n − 0)

2
∼ N (0, 1)

For n = 100 this means: 5 · X̄100 ∼ N (0, 1) and

X̄100 < −0.4⇔ 5 · X̄100 < −2

From Table 1 we see that −2 corresponds to the q0.025 quantile, so that the test is (at
least) to the level 0.025.

3(b):Under H1 we have
5 · (X̄100 + 0.54) ∼ N (0, 1)

X̄100 < −0.4⇔ X̄100 + 0.54 < 0.14⇔ 5(X̄100 + 0.54) < 0.7

From Table 1 we see that 0.7 corresponds to the q0.75 quantile, so that the power of the
test is 0.75.

3(c): Under H0 we have
5 · (X̄100 − 0) ∼ N (0, 1)

We reject H0 if X̄100 takes values lower than a threshold. Hence, the p-value p must fulfill:

5X̄100 = qp ⇔ −0.7 = qp

From q0.75 = 0.7 it follows q0.25 = −0.7, so that p = 0.25

3(d): Under H1 we have
√
n · (x̄n + 0.54)

2
∼ N (0, 1)

and the relationship:

x̄n < −0.4⇔
√
n · (x̄n + 0.54)

2
< 0.07 ·

√
n

From Table 1 we see that the 0.9 quantile corresponds to q0.9 = 1.3.
To reach a power of 0.9 we thus need:

0.07 ·
√
n = q0.9 = 1.3⇔ n =

(
1.3

0.07

)2

≈ 344.9

That is, the sample size must be at least n = 345.
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Solutions Exercise 4

4(a) The joint density is:

p(x1, . . . , xn|λ) =
n∏
i=1

p(xi|λ) = e−nλ · λ
n∑
i=1

xi

n∏
i=1

xi!
= h

(
n∑
i=1

xi|λ

)
· g(x1, . . . , xn)

where

h

(
n∑
i=1

xi|λ

)
= e−nλ · λ

n∑
i=1

xi
and g(x1, . . . , xn) =

1
n∏
i=1

xi!

It follows (factorization theorem) that T (X1, . . . , Xn) =
n∑
i=1

Xi is sufficient statistic.

4(b) Let λ1 > λ0 and compute the joint density ratio:

W (X1, . . . , Xn) =
p(X1, . . . , Xn|λ0)
p(X1, . . . , Xn|λ1)

=

e−nλ0 · λ
(
n∑
i=1

Xi)

0
n∏
i=1

Xi!

e−nλ1 · λ
(
n∑
i=1

Xi)

1
n∏
i=1

Xi!

= en(λ1−λ0) ·
(
λ0
λ1

) n∑
i=1

Xi

Because of λ1 > λ0 the density ratio is a monotone decreasing function in the sufficient

statistic
n∑
i=1

Xi.

We reject H0 if

en(λ1−λ0) ·
(
λ0
λ1

) n∑
i=1

Xi

< k ⇔
n∑
i=1

Xi > k0

Under H0 the statistic
n∑
i=1

Xi has a Poisson distribution with parameter nλ0. Therefore,

the decision rule is to reject the null hypothesis H0 when
n∑
i=1

Xi takes a value equal to or

larger than qnλ0, 0.95 quantile.
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