Exam - Statistics (WBMA009-05) 2021/2022

Date and time: November 10, 2021, 18.45-21.45h
Place: Exam Hall 2, Blauwborgje 4

Rules to follow:

- This is a closed book exam. Consultation of books and notes is not permitted. You can use a simple (non-programmable) calculator.
- Write your name and student number onto each paper sheet.

There are 4 exercises and you can reach 90 points.
ALWAYS include the relevant equation(s) and/or short descriptions.

- We wish you success with the completion of the exam!

START OF EXAM

1. Asymptotic confidence intervals and tests. 25

Consider a random sample X_{1}, \ldots, X_{n} from a negative Binomial distribution with known parameter $r \in \mathbb{N}$ and unknown probability parameter $\theta \in(0,1)$. Recall that the density and the expectation are

$$
f(x)=\binom{x+r-1}{x} \cdot(1-\theta)^{r} \cdot \theta^{x} \quad\left(x \in \mathbb{N}_{0}\right), \quad E[X]=\frac{\theta r}{1-\theta}
$$

(a) Show that the ML estimator of θ is: $\hat{\theta}_{M L}=\bar{X} /(r+\bar{X})$.

Check via the 2nd derivative if this is really a maximum point. 5
(b) Show that the expected Fisher information (for a sample size 1) is

$$
\begin{equation*}
I(\theta)=\frac{r}{\theta \cdot(1-\theta)^{2}} \tag{5}
\end{equation*}
$$

From now on we assume that $r=2, n=20$ and that $\bar{X}=8$ has been observed. And we use the quantiles provided in Table 1 on page 2.
(c) Make use of the asymptotic normality of the ML estimator and give a two-sided asymptotic 95% confidence interval $[L, U]$ for $\theta .5$
(d) Make use of the asymptotic normality of the ML estimator and give a one-sided asymptotic 95% confidence interval $(-\infty, U]$ for θ. 5
(e) Check whether a score-test to the level $\alpha=0.02$ would reject the null hypothesis $H_{0}: \theta=0.9$ in favour of the alternative $H_{1}: \theta \neq 0.9$. 5
HINT: Score test: $\frac{d}{d \theta} l_{X}(\theta) / \sqrt{n \cdot I(\theta)}$ is asymptotically $N(0,1)$ distributed.

α	0.5	0.75	0.9	0.95	0.975	0.99	0.99997
q_{α}	0	0.7	1.3	1.6	2	2.3	4

Table 1: Approximate quantiles q_{α} of the $\mathcal{N}(0,1)$ distribution.
2. Random sample. $\mathbf{3 0}$

Consider a random sample

$$
X_{1}, \ldots, X_{n} \sim \mathcal{F}_{\theta}
$$

from a distribution that depends on a parameter $\theta>0$ and whose density is:

$$
f_{\theta}(x)=\frac{1}{2} \cdot \theta^{3} \cdot x^{2} \exp \{-x \theta\} \quad(x>0)
$$

(a) Give a sufficient statistic for $\theta .5$
(b) Compute the ML estimator of $\theta .5$

HINT: Check via the 2nd derivative whether you have a global maximum.
(c) Compute the Fisher information $I(\theta)$ for a sample of size $n=1.5$
(d) Assume that $n=81$ and $\hat{\theta}_{M L}=3$. Give an asymptotic one-sided 95% confidence interval (of the type $[L, \infty]$) for $\theta .5$
HINTS:
You can assume that all regularity conditions are fulfilled.
See Table 1 for the relevant quantiles.
(e) Consider the simple test problem

$$
H_{0}: \theta=4 \text { vs. } H_{1}: \theta=2
$$

Show that a statistical test that rejects H_{0} if $\sum_{i=1}^{n} X_{i}>k_{0}$, where $k_{0}>0$ is a constant, is the UMP test for this test problem. 10

3. Test level, power and p-value of a statistical test. 20

Consider a random sample of size n from a Gaussian distribution with known variance parameter $\sigma^{2}=4$:

$$
X_{1}, \ldots, X_{n} \sim \mathcal{N}(\mu, 4)
$$

and the simple test problem

$$
H_{0}: \mu=0 \text { vs. } H_{1}: \mu=-0.54
$$

The null hypothesis is rejected when $\bar{x}_{n} \leq-0.4$.
For solving the exercise use and only use the quantiles provided in Table 1.
(a) Given sample size $n=100$, what is the test level? 5
(b) Given sample size $n=100$, what is the power of the test? 5
(c) Given sample size $n=100$, assume that $\bar{x}_{n}=-0.14$ was observed.

What is the p-value of the test? 5
(d) How large must n (at least) be, so that the test has power 0.9 ? 5
4. Sample from Poisson distribution. 15

Let X_{1}, \ldots, X_{n} be a sample from a Poisson distribution with density:

$$
p(x \mid \lambda)=e^{-\lambda} \cdot \frac{\lambda^{x}}{x!} \quad\left(x \in \mathbb{N}_{0}\right)
$$

where $\lambda>0$ is an unknown parameter.
Recall that $T\left(X_{1}, \ldots, X_{n}\right):=\sum_{i=1}^{n} X_{i}$ has a Poisson distribution with parameter $n \lambda$.
(a) Show that $T\left(X_{1}, \ldots, X_{n}\right):=\sum_{i=1}^{n} X_{i}$ is a sufficient statistic for $\lambda .5$
(b) Derive the uniform most powerful (UMP) test for the test problem

$$
H_{0}: \lambda \leq \lambda_{0} \quad \text { vs. } \quad H_{1}: \lambda>\lambda_{0}
$$

to the significance level $\alpha=0.05 .10$
HINT: In your solutions you can use the symbol $q_{\lambda, \alpha}$ to denote the α quantile of a Poisson distribution with parameter λ.

Solutions Exercise 1

1(a): Compute the log likelihood:

$$
\begin{aligned}
l_{X}(\theta) & =\log \left(\prod_{i=1}^{n}\binom{x_{i}+r-1}{x_{i}} \cdot(1-\theta)^{r} \cdot \theta^{x_{i}}\right) \\
& =\log \left(\left(\prod_{i=1}^{n}\binom{x_{i}+r-1}{x_{i}}\right) \cdot(1-\theta)^{n r} \cdot \theta^{\sum_{i=1}^{n} x_{i}}\right) \\
& =\log \left(\prod_{i=1}^{n}\binom{x_{i}+r-1}{x_{i}}\right)+n r \log (1-\theta)+\left(\sum_{i=1}^{n} x_{i}\right) \log (\theta)
\end{aligned}
$$

Take the derivative w.r.t. θ and set it to 0 :

$$
\begin{aligned}
& \frac{-n r}{1-\theta}+\frac{\sum_{i=1}^{n} x_{i}}{\theta}=0 \Leftrightarrow-n r \theta+\left(\sum_{i=1}^{n} x_{i}\right)(1-\theta)=0 \Leftrightarrow-\left(n r+\sum_{i=1}^{n} x_{i}\right) \theta+\sum_{i=1}^{n} x_{i}=0 \\
& \Leftrightarrow \theta=\frac{\sum_{i=1}^{n} x_{i}}{n r+\sum_{i=1}^{n} x_{i}} \Leftrightarrow \theta=\frac{\bar{x}}{r+\bar{x}}
\end{aligned}
$$

For the second order derivative we have:

$$
\frac{d^{2}}{d \theta^{2}} l_{X}(\theta)=\frac{-n r}{(1-\theta)^{2}}-\frac{\sum_{i=1}^{n} x_{i}}{\theta^{2}}<0 \quad(0<\theta<1)
$$

This confirms that $\hat{\theta}_{M L}=\bar{X} /(r+\bar{X})$ globally maximizes the (log-)likelihood.
$\mathbf{1}(\mathbf{b}):$ For $n=1$ we have the 2 nd order derivative of the log likelihood:

$$
\frac{d^{2}}{d \theta^{2}} l_{X_{1}}(\theta)=\frac{-r}{(1-\theta)^{2}}-\frac{X_{1}}{\theta^{2}}
$$

Compute the Fisher Information:

$$
\begin{aligned}
I(\theta) & =-E_{\theta}\left[\frac{d^{2}}{d \theta^{2}} l_{X_{1}}(\theta)\right]=E_{\theta}\left[\frac{r}{(1-\theta)^{2}}+\frac{X_{1}}{\theta^{2}}\right]=\frac{r}{(1-\theta)^{2}}+\frac{E\left[X_{1}\right]}{\theta^{2}} \\
& =\frac{r}{(1-\theta)^{2}}+\frac{\frac{r \theta}{(1-\theta)}}{\theta^{2}}=\frac{r}{(1-\theta)^{2}}+\frac{r \theta}{(1-\theta) \theta^{2}}=\frac{r \theta+r(1-\theta)}{(1-\theta)^{2} \theta}=\frac{r}{\theta(1-\theta)^{2}}
\end{aligned}
$$

$\mathbf{1}(\mathbf{c})$: Asymptotically $\sqrt{I(\theta)} \sqrt{n} \cdot\left(\hat{\theta}_{M L}-\theta\right) \sim \mathcal{N}(0,1)$, hence:

$$
\begin{aligned}
& P\left(q_{0.025} \leq \sqrt{I(\theta)} \sqrt{n} \cdot\left(\hat{\theta}_{M L}-\theta\right) \leq q_{0.975}\right)=0.95 \\
\Leftrightarrow & P\left(\hat{\theta}_{M L}-\frac{q_{0.975}}{\sqrt{I(\theta)} \cdot \sqrt{n}} \leq \theta \leq \hat{\theta}_{M L}-\frac{q_{0.025}}{\sqrt{I(\theta)} \cdot \sqrt{n}}\right)=0.95
\end{aligned}
$$

With $q_{0.975}=2$ and $q_{0.025}=-2$, and $I(\theta)$ being replaced by $I\left(\hat{\theta}_{M L}\right)$, we get the CI:

$$
\hat{\theta}_{M L} \pm 2 /\left(\sqrt{I\left(\hat{\theta}_{M L}\right)} \cdot \sqrt{n}\right)
$$

Here we have $\hat{\theta}_{M L}=0.8$ and $2 /\left(\sqrt{I\left(\hat{\theta}_{M L}\right)} \sqrt{n}\right)=2 /\left(\sqrt{2 /\left(0.8 \cdot 0.2^{2}\right) \sqrt{20}} \approx 0.057\right.$.
So the two-sided CI is: $[0.74,0.86]$.
1(d): Like part (c), but here we use:

$$
P\left(q_{0.05} \leq \sqrt{I(\theta)} \sqrt{n} \cdot\left(\hat{\theta}_{M L}-\theta\right)\right)=0.95 \Leftrightarrow P\left(\hat{\theta}_{M L}-\frac{q_{0.05}}{\sqrt{I(\theta)} \cdot \sqrt{n}} \geq \theta\right)=0.95
$$

With $q_{0.05}=-1.6$ the one-sided 95% CI for θ is: $\left(-\infty, \hat{\theta}_{M L}+\frac{1.6}{\sqrt{I\left(\hat{\theta}_{M L}\right)} \cdot \sqrt{n}}\right]$
Here we have $\hat{\theta}_{M L}=0.8$ and $\frac{1.6}{\sqrt{I\left(\hat{\theta}_{M L}\right)} \sqrt{n}}=\frac{1.6}{\sqrt{\frac{2}{0.8 \cdot 0.2^{2}}} \sqrt{20}} \approx 0.045$.
So the one-sided CI is: $(-\infty, 0.845]$.
$\mathbf{1}(\mathbf{e}):$ Asymptotically: $\frac{\frac{d}{d \theta} l_{X}(\theta)}{\sqrt{n \cdot I(\theta)}} \sim N(0,1)$ where $\frac{d}{d \theta} l_{X}(\theta)=\frac{-n r}{1-\theta}+\frac{\sum_{i=1}^{n} x_{i}}{\theta}$.
Given $r=2, \bar{X}=8$ and $n=20$ and $\theta_{0}=0.9$ we get:
$\frac{-n r}{1-\theta}+\frac{\sum_{i=1}^{n} x_{i}}{\theta}=\frac{-40}{1-0.9}+\frac{20.8}{0.9} \approx-222$ and $\sqrt{n \cdot I(\theta)}=\sqrt{20 \cdot \frac{2}{0.9 \cdot 0.1^{2}}} \approx 66.67$
Therefore the score test statistic takes the value: $\frac{\frac{d}{d \theta} l_{X}(\theta)}{\sqrt{n \cdot I(\theta)}}=\frac{-222}{66.67} \approx-3.33$. As the value is lower than the $q_{0.01}$ quantile -2.3 of the $N(0,1)$, the score test would reject the null hypothesis to the level 0.02 .

Solutions Exercise 2

2(a):We have the likelihood

$$
L(\theta)=\prod_{i=1}^{n} \frac{1}{2} \cdot \theta^{3} \cdot x_{i}^{2} \cdot \exp \left\{-x_{i} \theta\right\}=\frac{1}{2^{n}} \cdot \theta^{3 n} \cdot\left(\prod_{i=1}^{n} x_{i}^{2}\right) \cdot \exp \left\{-\theta \sum_{i=1}^{n} x_{i}\right\}
$$

And we can factorize into:

$$
L(\theta)=g\left(x_{1}, \ldots, x_{n}\right) \cdot h\left(\sum_{i=1}^{n} x_{i}, \theta\right)
$$

where

$$
g\left(x_{1}, \ldots, x_{n}\right):=\frac{1}{2^{n}} \cdot \prod_{i=1}^{n} x_{i}^{2} \text { and } h\left(\sum_{i=1}^{n} x_{i}, \theta\right):=\theta^{3 n} \cdot \exp \left\{-\theta \sum_{i=1}^{n} x_{i}\right\}
$$

2(b): From the likelihood we get the log-likelihood:

$$
l(\theta)=-n \log (2)+3 n \log (\theta)+2 \sum_{i=1}^{n} \log \left(x_{i}\right)-\theta \sum_{i=1}^{n} x_{i}
$$

We take the derivative w.r.t. θ and we set it to zero:

$$
l^{\prime}(\theta)=\frac{3 n}{\theta}-\sum_{i=1}^{n} x_{i}=0 \Leftrightarrow \theta=\frac{3 n}{\sum_{i=1}^{n} x_{i}}=\frac{3}{\bar{x}}
$$

We compute the 2nd derivative:

$$
l^{\prime \prime}(\theta)=-\frac{3 n}{\theta^{2}}
$$

As the 2nd derivative is always negative, we indeed have a maximum point. Hence

$$
\hat{\theta}_{M L}=\frac{3}{\bar{x}}
$$

2(c): We compute the Fisher information (with $n=1$)

$$
I(\theta)=-E\left[l^{\prime \prime}(\theta)\right]=-E\left[-\frac{3}{\theta^{2}}\right]=\frac{3}{\theta^{2}}
$$

$\mathbf{2 (d)}$:For large n we have:

$$
\sqrt{n} \cdot\left(\hat{\theta}_{M L}-\theta\right) \sim \mathcal{N}\left(0, \frac{1}{I(\theta)}\right)
$$

Plugging in $n=81$ and replacing $I(\theta)=\frac{3}{\theta^{2}}$ by the observed Fisher information

$$
I\left(\hat{\theta}_{M L}\right)=\frac{3}{3^{2}}=\frac{1}{3}
$$

we get

$$
9 \cdot\left(\hat{\theta}_{M L}-\theta\right) \sim \mathcal{N}(0,3) \Leftrightarrow \frac{9}{\sqrt{3}} \cdot\left(\hat{\theta}_{M L}-\theta\right) \sim \mathcal{N}(0,1)
$$

so that

$$
P\left(\frac{9}{\sqrt{3}} \cdot\left(\hat{\theta}_{M L}-\theta\right)<q_{0.95}\right)=0.95
$$

Solving for θ yields:

$$
P\left(\theta>\hat{\theta}_{M L}-q_{0.95} \cdot \frac{\sqrt{3}}{9}\right)=0.95
$$

With $\hat{\theta}_{M L}=3$ and $q_{0.95}=1.6$ (see Table 1) we have the one-sided 95% confidence interval:

$$
[2.69 ; \infty]
$$

2(e): The UMP test rejects H_{0} if the likelihood ratio $W(X)$ is smaller than a constant k. We have:

$$
W(X)=\frac{L(4)}{L(2)}=\frac{\frac{1}{2^{n}} \cdot 4^{3 n} \cdot\left(\prod_{i=1}^{n} X_{i}^{2}\right) \cdot \exp \left\{-4 \sum_{i=1}^{n} X_{i}\right\}}{\frac{1}{2^{n}} \cdot 2^{3 n} \cdot\left(\prod_{i=1}^{n} X_{i}^{2}\right) \cdot \exp \left\{-2 \sum_{i=1}^{n} X_{i}\right\}}=2^{3 n} \cdot \exp \left\{-2 \sum_{i=1}^{n} X_{i}\right\}
$$

$W(X)$ is a monotone decreasing function in $\sum_{i=1}^{n} X_{i}$, so that we have the equivalence:

$$
W(X)<k \Leftrightarrow \sum_{i=1}^{n} X_{i}>k_{0}
$$

This shows that a test who rejects H_{0} if $\sum_{i=1}^{n} X_{i}>k_{0}$ is UMP.

Solutions Exercise 3

3(a): Under H_{0} we have

$$
\sqrt{n} \cdot \frac{\left(\bar{X}_{n}-0\right)}{2} \sim \mathcal{N}(0,1)
$$

For $n=100$ this means: $5 \cdot \bar{X}_{100} \sim \mathcal{N}(0,1)$ and

$$
\bar{X}_{100}<-0.4 \Leftrightarrow 5 \cdot \bar{X}_{100}<-2
$$

From Table 1 we see that -2 corresponds to the $q_{0.025}$ quantile, so that the test is (at least) to the level 0.025.

3(b):Under H_{1} we have

$$
\begin{gathered}
5 \cdot\left(\bar{X}_{100}+0.54\right) \sim \mathcal{N}(0,1) \\
\bar{X}_{100}<-0.4 \Leftrightarrow \bar{X}_{100}+0.54<0.14 \Leftrightarrow 5\left(\bar{X}_{100}+0.54\right)<0.7
\end{gathered}
$$

From Table 1 we see that 0.7 corresponds to the $q_{0.75}$ quantile, so that the power of the test is 0.75 .

3(c): Under H_{0} we have

$$
5 \cdot\left(\bar{X}_{100}-0\right) \sim \mathcal{N}(0,1)
$$

We reject H_{0} if \bar{X}_{100} takes values lower than a threshold. Hence, the p-value \mathbf{p} must fulfill:

$$
5 \bar{X}_{100}=q_{\mathbf{p}} \Leftrightarrow-0.7=q_{\mathbf{p}}
$$

From $q_{0.75}=0.7$ it follows $q_{0.25}=-0.7$, so that $\mathbf{p}=0.25$
3(d): Under H_{1} we have

$$
\sqrt{n} \cdot \frac{\left(\bar{x}_{n}+0.54\right)}{2} \sim \mathcal{N}(0,1)
$$

and the relationship:

$$
\bar{x}_{n}<-0.4 \Leftrightarrow \sqrt{n} \cdot \frac{\left(\bar{x}_{n}+0.54\right)}{2}<0.07 \cdot \sqrt{n}
$$

From Table 1 we see that the 0.9 quantile corresponds to $q_{0.9}=1.3$.
To reach a power of 0.9 we thus need:

$$
0.07 \cdot \sqrt{n}=q_{0.9}=1.3 \Leftrightarrow n=\left(\frac{1.3}{0.07}\right)^{2} \approx 344.9
$$

That is, the sample size must be at least $n=345$.

Solutions Exercise 4

4(a) The joint density is:

$$
p\left(x_{1}, \ldots, x_{n} \mid \lambda\right)=\prod_{i=1}^{n} p\left(x_{i} \mid \lambda\right)=e^{-n \lambda} \cdot \frac{\lambda_{i=1}^{\sum_{i=1}^{n} x_{i}}}{\prod_{i=1}^{n} x_{i}!}=h\left(\sum_{i=1}^{n} x_{i} \mid \lambda\right) \cdot g\left(x_{1}, \ldots, x_{n}\right)
$$

where

$$
h\left(\sum_{i=1}^{n} x_{i} \mid \lambda\right)=e^{-n \lambda} \cdot \lambda_{i=1}^{\sum_{i=1} x_{i}} \text { and } g\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{\prod_{i=1}^{n} x_{i}!}
$$

It follows (factorization theorem) that $T\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{n} X_{i}$ is sufficient statistic.

4(b) Let $\lambda_{1}>\lambda_{0}$ and compute the joint density ratio:

$$
\begin{aligned}
W\left(X_{1}, \ldots, X_{n}\right)= & \frac{p\left(X_{1}, \ldots, X_{n} \mid \lambda_{0}\right)}{p\left(X_{1}, \ldots, X_{n} \mid \lambda_{1}\right)} \\
= & \frac{e^{-n \lambda_{0}} \cdot \frac{\lambda_{0}^{\left(\sum_{i=1}^{n} x_{i}\right)}}{\prod_{i=1}^{n} X_{i}!}}{e^{-n \lambda_{1}} \cdot \frac{\left.\lambda_{i=1}^{n} x_{i}\right)}{\prod_{i=1}^{n} X_{i}!}}=e^{n\left(\lambda_{1}-\lambda_{0}\right)} \cdot\left(\frac{\lambda_{0}}{\lambda_{1}}\right)^{\sum_{i=1}^{n} X_{i}}
\end{aligned}
$$

Because of $\lambda_{1}>\lambda_{0}$ the density ratio is a monotone decreasing function in the sufficient statistic $\sum_{i=1}^{n} X_{i}$.

We reject H_{0} if

$$
e^{n\left(\lambda_{1}-\lambda_{0}\right)} \cdot\left(\frac{\lambda_{0}}{\lambda_{1}}\right)^{\sum_{i=1}^{n} X_{i}}<k \Leftrightarrow \sum_{i=1}^{n} X_{i}>k_{0}
$$

Under H_{0} the statistic $\sum_{i=1}^{n} X_{i}$ has a Poisson distribution with parameter $n \lambda_{0}$. Therefore, the decision rule is to reject the null hypothesis H_{0} when $\sum_{i=1}^{n} X_{i}$ takes a value equal to or larger than $q_{n \lambda_{0}, 0.95}$ quantile.

